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Abstract 

Endurance and resistance exercise are divergent modes of exercise training which each drive mode specific adaptive responses. 

Some of these adaptations are mutually exclusive, whilst others drive divergent effects on muscle contractile properties, mass and 

metabolic function. When both resistance and endurance exercise training are employed together, a process termed ‘concurrent 

training’, there appears to be a reduction in skeletal muscle adaptive potential. In real world terms this is evident in decathletes, in 

which personal bests represent approximately a 25% reduction compared to competitors from individual events. This review will 

detail the molecular pathways thought to drive the resistance and endurance training response and discuss recent evidence 

addressing the cross talk between these molecular pathways. Ultimately we will discuss why, in our opinion, the molecular events 

currently proposed to cause interference in skeletal muscle adaptation to concurrent training are an inadequate explanation for the 

repression on strength gains observed. 
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Introduction 

The title of “World’s Greatest Athlete” is traditionally given to the 
gold medallist in the decathlon. No Olympic sport epitomises the 
ethos of the Olympic moto (faster, higher, stronger) more. 
However, when comparing decathlon bests to the world records 
for each individual event, it is obvious that it simply is not 
possible for a decathlete to be higher, faster or stronger 
compared to specialist competitors in each of the 10 decathlon 
events. Typically, when comparing world best’s in each event, 
even the premier decathletes are between 7-25% worse. Thus, 
when training to excel in strength and endurance, skeletal 
muscle adaptation is compromised in the strength response, a 
process currently termed the concurrent training effect.  

Obviously this is an over-simplified example as a decathlete’s 
training pattern and body type are vastly different than the pure 
strength athlete’s. These factors combined with differences in 
time spent on skill acquisition could explain the reduced 
performance in decathletes compared to purists. However, the 
concurrent training phenomenon was first tested experimentally 
by Robert C. Hickson in a landmark paper (Hickson, 1980) 
utilising cycling as the endurance component of a concurrent 
training program. Hickson showed that by combining endurance 
and strength training, strength gains plateaued and 
subsequently decline in the 10th week of the concurrent 
program (Hickson, 1980). These data (see figure1) 
demonstrated for the first time that endurance training was 
capable of interfering with the adaptive response to strength 
training as individuals on the strength alone program continued 
to make significant strength gains above the concurrent group. 
The scientific reasons behind this effect remain unclear, despite 

numerous experimental approaches. Interestingly, a recent 
meta-analysis of the concurrent training literature highlighted 
that when running is combined concurrently with resistance 
exercise there is a significant inhibition on muscle growth 
compared to when strength training is carried out alone (Wilson 
et al., 2012). Additionally, when the interference effect is 
assessed as a function of the volume of endurance type activity 
it would appear that the higher the volume the lower the growth 
and strength adaptations.  

In this review we will explore the current understanding of the 
molecular control of strength and endurance training responses, 
highlighting points of cross talk that may be partly responsible 
for the concurrent training effect. Due to space constraints, we 
will focus primarily on growth inhibition mediated by concurrent 
training. To assess the impact of concurrent training on 
neuromuscular measures, readers are directed to Gustavo 
Nader’s excellent review (Nader, 2006) 

Mode specific adaptive responses to exercise 

Although a gross over simplification, exercise is typically 
generalised into two modes; resistance and endurance exercise. 
Resistance exercise is comprised of movements carried out at 
high intensity (high force) and low volume (a small number of 
repetitions). Endurance training in contrast consists of low 
intensity (low force) and high volume movements (high 
repetitions). There are a number of mode specific adaptations 
that are critical to improving performance in the chosen events. 
In general terms resistance training leads to protein accretion, 
increased fibre cross-sectional area and higher force production 
whilst endurance training leads to an increase in mitochondrial 
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Figure 1. The strength response to concurrent exercise training. 

Subjects underwent 3 different 10 week training protocols involving 1) 
resistance training alone (30-40mins / day on 5 days / week), 2) 
endurance training alone (40mins / day on 6 days / week) and 3) 
concurrent training (30-40mins resistance training for 5 days / week in 
addition to 40 mins of endurance training on 6 days / week). Adapted 
from Hickson, 1980. 

abundance and function, capillary density and greater fatigue 
resistance (Baar, 2009; Booth & Thomason, 1991). 

Resistance Exercise 

From a strength training perspective, the most visually obvious 
adaptation is an increase in muscle mass. Growth rates average 
at approximately 0.1% per day of training (Booth & Thomason, 
1991). This growth is primarily mediated by increases in the 
contractile apparatus (Luthi et al., 1986) which increases 
skeletal muscle radiological density (Claassen et al., 1989) and 
radial diameter (Claassen et al., 1989; Luthi et al., 1986; Narici 
et al., 1996). Ultimately these changes amplify the capacity to 
produce force both at the whole muscle (Claassen et al., 1989; 
Luthi et al., 1986; Narici et al., 1996) and single fibre level 
(Malisoux et al., 2007). Each bout of resistance exercise when 
combined with the appropriate nutrition increases the rates of 
muscle protein synthesis (MPS) above breakdown for up to 
48hrs (Phillips et al., 1997). It is presumed that such intermittent 
increases in protein synthesis in response to each bout of 
training are responsible for the gradual hypertrophy over a 
period of training (Atherton & Smith, 2012).  

There are two potential mechanisms by which this increase in 
protein synthesis could occur, (i) increased overall mRNA 
expression, or (ii) increased mRNA translation. Following 
detailed investigation in both animal (Wong & Booth, 1990) and 
human (Chesley et al., 1992) models of resistance exercise, it is 
apparent that the translation step is a major rate limiting step in 
the control of the post exercise increase in protein synthesis 
(Atherton & Smith, 2012). Collectively this means that the 
increased protein synthesis seen in response to resistance 
exercise is due to increased mRNA activity and not increased 
mRNA production. 

For these reasons the molecular control of muscle protein 
synthesis in response to resistance exercise and nutrition has 
been a hot topic of investigation for several decades. The major 
rate limiting step (in muscle at least) for protein synthesis is the 
initiation step (Gingras et al., 1999). Translation initiation is the 

process by which ribosomes are added to mRNA transcripts. On 
active mRNA transcripts ribosomes are normally stacked 80-
100 nucleotides apart with the capacity to stack much closer. In 
response to an appropriate stimulus, ribosomes can stack up to 
27-29 nucleotides apart (Wolin & Walter, 1988). Active mRNA 
transcripts can therefore increase their protein production by up 
to 3 fold. Not surprisingly, resistance exercise increases the 
amount of ribosomes bound to transcripts leading to shifted 
polysome profiles (Baar & Esser, 1999). 

Molecular signals that regulate protein synthesis in 
response to resistance exercise  

A range of animal studies have demonstrated that applying a 
strain to muscle independently of innervation can induce growth 
[reviewed (Hamilton et al., 2009)]. Therefore strain induced by 
contraction as opposed to contraction per se seems to be a key 
component for the hypertrophic response. In addition, recent 
work appears to suggest that the growth and protein synthesis 
responses to muscle loading is intrinsic to the muscle and 
apparently independent of local and circulating growth factors 
(Witkowski et al., 2010; Spangenburg et al., 2008; Hamilton et 
al., 2013; Goldberg et al., 1975; West et al., 2009; West et al., 
2010; West et al., 2012; West & Phillips, 2012; Hornberger et al., 
2004; Goodman et al., 2010; O'Neil et al., 2009).  

Alternatively, progress has been made on the identification of 
non-hormonal pathways of muscle hypertrophy. For instance, 
Ca

2+
 entry through stretch activated calcium channels appear to 

be required for anabolic signalling processes (Spangenburg & 
McBride, 2006). In addition, mechanically sensitive 
Phospholipase D (PLD) is activated by resistance exercise and 
is required for anabolic signalling processes (Hornberger et al., 
2006; O'Neil et al., 2009). Finally it is suggested that a 
mechanosensor exists somewhere in muscle (likely at a junction 
between the contractile apparatus and extracellular matrix) to 
couple strain to protein synthesis (Hamilton et al., 2009). 
However the identity of such mechanosensors are still unknown.  

One suggestion is that the mechanosensor/s may exist in the 
elements which link the skeletal muscle contractile apparatus to 
the sarcolemma and extracellular matrix (Philp et al., 2011). The 
contractile apparatus of skeletal muscle is intricately linked via 
membrane bound multi-subunit complexes known as 
costameres to the sarcolemmal membrane. Costameres are 
uniquely positioned to house a mechano-sensor. They are 
aligned to the z-discs of the peripheral myofibrils and through a 
series of complex protein-protein interactions couple force 
production by the sarcomeres through the sarcolemma to the 
extracellular matrix (Ervasti, 2003). An essential component of 
shaping tissue morphology and physiology is a cell’s ability to 
alter the structural properties within and outwith itself to adapt to 
variations in the mechanical environment (Ingber, 1997). The 
concept of tensegrity predicts the existence of mechanisms that 
sense a variety of mechanical forces and transmit these cues 
into biochemical adaptive signals (Ingber, 1997). Based on the 
positioning of the costameres it is therefore no surprise that a 
number of signalling proteins have been described in or 
associated with costameres (Ervasti, 2003). Of interest to 
muscle hypertrophy is the Focal Adhesion Kinase (FAK). In 
response to increased mechanical deformation, FAK is recruited 
to focal adhesions where it controls molecules which regulate 
cell protein synthesis (Gan et al., 2006). Fluck and co-workers 
have previously demonstrated that chronic loading in chick 
muscle led to the increased expression and activation of FAK 
(Fluck et al., 1999). More recently Atherton and colleagues 
demonstrated that cyclic stretch in the rat derived L6 myotubes 
increased the phosphorylation of FAK (Atherton et al., 2009) 
and functional FAK is required for growth factor induced 
myotube growth and protein synthesis (Crossland et al., 2013). 
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Based on the linkage of FAK with costameres and its interaction 
with altered protein synthetic responses, FAK is a strong 
candidate as one, of likely many, skeletal muscle 
mechanosensors.  

Although we still do not know the exact mechanosenosry 
mechanisms responsible for resistance exercise induced 
changes in muscle protein synthesis, research has shown that 
the protein kinase complex Mechanistic Target of Rapamycin 
(mTOR) acts as a major signalling hub to control translation 
initiation, ribosomal biogenesis and protein synthesis responses 
to resistance exercise (Drummond et al., 2009). mTOR exists as 
a complex with the protein raptor which defines it as mTOR 
complex 1 (mTORC1) (Zoncu et al., 2011). mTORC2 is defined 
by the existence of the adaptor protein rictor (Zoncu et al., 2011). 
Although mTORC1 has similarity to a lipid kinase it is in fact a 
protein kinase (transfers phosphate to protein targets). It acts as 
an important signalling hub that integrates signals from nutrition, 
hypoxia, energy stress, hormonal status and mechanical loading 
to regulate protein synthesis (Hamilton et al., 2009).  

Mechanistic studies in cells have shown that mTORC1 has two 
well defined downstream targets 4EBP1 (eIF4E binding protein1) 
and rp70S6K1 (ribosomal protein S6 kinase of 70KDa) (Zoncu 
et al., 2011). Phosphorylation and activation of rp70S6K1 (S6K1) 
leads to an increase in the pioneer round of translation on new 
mRNA transcripts by phosphorylating the target S6K1 Aly/Ref 
like target (SKAR) (Ma et al., 2008). Additionally, through the 
regulation of S6K1, mTORC1 also controls the rate of 
elongation by relieving an inhibition of the elongation factor 
eEF2 through phosphorylation of eEF2 kinase (eEF2K) (Avruch 
et al., 2001). Finally mTORC1 also controls ribosomal 
biogenesis (Mayer & Grummt, 2006). A subset of mRNA 
transcripts known as 5’-TOP (5 prime teriminal oligopyrmidine 
tract) transcripts are selectively recruited to polysome fractions 
upon the activation of mTORC1 (Meyuhas & Dreazen, 2009). 
5’TOP transcripts are enriched for growth factors and the 
enzymes that form the machinery required for building proteins 
such as ribosomal proteins and initiation/elongation factors. 
Therefore, induction of mTORC1 activity not only acutely 
increases global protein synthesis but it also selectively induces 
the synthesis of the protein synthesis machinery which helps 
maintain or increase protein synthesis capacity.  

Support for the role of mTORC1 in skeletal muscle hypertrophy 
has arisen following studies utilizing the compound rapamycin. 
Rapamycin is a specific inhibitor of mTORC1 and use of this 
compound during chronic loading (Bodine et al., 2001) and 
acute resistance exercise in rodents (Kubica et al., 2008) or 
humans (Drummond et al., 2009) prevents increases in growth 
and muscle protein synthesis respectively. Whilst mTORC1 
appears instrumental in mediating increased protein synthesis 
following acute resistance exercise (Drummond et al., 2009), 
few studies have examined the relevance of mTORC1 for long-
term hypertrophy. Recently, Phillips et al, (2013) reported that 
individual’s who responded the most to a period of resistance 
training displayed reduced mTORC1 activity, as indicated by 
down-regulation of mTORC1 transcriptional targets post-training 
(Phillips et al., 2013). This data clearly indicates that there is still 
considerable information unknown relating to the role of 
mTORC1 in the molecular regulation of the hypertrophy 
response. To further complicate matters, one of the key 
regulators of endurance adaptation AMPK (AMP dependant 
protein kinase; discussed in more detail in the next section) is 
also activated by resistance type exercise (Dreyer et al., 2006; 
Koopman et al., 2006) suggesting that signalling divergence is 
not clear cut in regulating the adaptive responses. 

 

Endurance Exercise  

Endurance exercise leads to a cluster of local skeletal muscle 
adaptations culminating in improved fatigue resistance (Booth & 
Thomason, 1991). These include, but are not limited to, 
increased angiogenesis (increased capillaries), mitochondrial 
biogenesis (increased number of mitochondria) and fibre type 
switching (muscle fibres switching from a fast to slow phenotype) 
(Lira et al., 2010). Unlike the adaptive responses to resistance 
exercise, much of what we know relating to the adaptive 
response to endurance training seems to be controlled primarily 
at the level of transcription (Egan & Zierath, 2013).  

Transcription is dependent upon the activity of transcription 
factors, which bind to and enhance the expression of specific 
subsets of target genes. Transcription factors are themselves 
tightly regulated, controlled by transcriptional co-activators and 
co-repressors in addition to numerous forms of post-
translational modification. The most characterised skeletal 
muscle co-activator is the peroxisome proliferator activated 
receptor-γ co-activator 1α (PGC-1α) (Puigserver et al., 1998). 
PGC-1α loss and gain of function models have indicated that 
PGC-1α regulates aspects of mitochondrial gene transcription 
and angiogenesis in response to exercise (Geng et al., 2010), 
with muscle-specific overexpression of PGC-1α resulting in 
mitochondrial biogenesis, improved skeletal muscle fatigue 
resistance and increased aerobic capacity (Calvo et al., 2008). It 
should also be noted however that both whole body (Leick et al., 
2008) and muscle-specific PGC-1α knockout mice respond to 
endurance training (Rowe et al., 2012). Human studies have 
also questioned the pivotal role of PGC-1α for endurance 
training adaptation (Keller et al., 2011). Collectively this data 
would therefore suggest that PGC-1α is part of a co-ordinated 
program initiating a transcriptional response to endurance 
training, however, as with any fine-tuned process, high levels of 
redundancy appear to exist with multiple signalling pathways 
converging to increased gene transcription post-exercise (Lira et 
al., 2010; Egan & Zierath, 2013). 

Whilst co-activators such as PGC-1α might mediate some of the 
adaptive response to exercise, the initial signals stemming from 
muscle contraction are important drivers of adaptation. 
Collectively, it is thought that this alteration in the cellular milieu 
is pivotal in mediating the adaptive response to exercise (White 
& Schenk, 2012; Philp et al., 2012). Muscle contraction alters 
intracellular Ca

2+
 homeostasis (Tavi & Westerblad, 2011), 

decreases glycogen content (Bergstrom & Hultman, 1966) 
disturbs the AMP/ATP ratio (Hancock et al., 2006) and 
NAD

+
/NADH ratios (White & Schenk, 2012). Sensitive to this 

metabolic flux are a group of energy sensing proteins that 
translate altered cellular energy status to gene and protein 
modification (Egan & Zierath, 2013). Research over the last 
decade has identified specific signalling cascades sensitive to 
metabolic intermediates, such as Calcium-Calmodulin (CaM) 
kinases, NAD

+ 
dependent Sirtuins (SIRT1-7), the cAMP 

sensitive PKA/CREB proteins and the AMP dependent protein 
kinase AMPK (Egan & Zierath, 2013).  

Whilst each of these proteins plays important roles in skeletal 
muscle adaptation, the remainder of this review will focus on 
AMPK. As its name would suggest, AMPK responds to changes 
in AMP levels, more specifically the ratio between ATP and 
AMP in that an increase in AMP activates the kinase (Hardie & 
Hawley, 2001). In addition, AMPK has a glycogen binding 
domain in its β-subunit, allowing it to sense glycogen content 
and it is activated by CaMKK in response to changes in calcium 
(McBride et al., 2009; Fogarty et al., 2010; Jensen et al., 2007a; 
Jensen et al., 2007b). Alterations in the NAD

+
/NADH ratio lead 

to activation of the NAD
+
 sensitive de-acetylase SIRT1 which 

also indirectly activates AMPK (Lan et al., 2008). AMPK has 
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been hypothesised to have evolved as an ancient energy stress 
sensor (Hardie et al., 2006) which is highly exercise responsive 
(Winder & Hardie, 1996) with a number of studies implicating 
AMPK in the post-exercise adaptive response (Rockl et al., 
2007; O'Neill et al., 2011).  

Almost two decades of research across a number of labs have 
revealed that both AMPK activity and phosphorylation are highly 
responsive to numerous modes of endurance type exercise 
(Winder et al., 2006). In vitro studies have suggested that AMPK 
regulates PGC-1α gene expression (Irrcher et al., 2008) in 
addition to regulating transcriptional activity via phosphorylation 
at Thr

177
 and Ser

538
 (Jager et al., 2007). Additionally, exercise 

induced mitochondrial translocation of PGC-1α has recently 
been suggested to require functional AMPK (Smith et al., 2013). 
Beyond PGC-1α, AMPK has been linked to the transcriptional 
regulation of glucose transport, following the observation that 
AMPK phosphorylates and inactivates HDAC5, leading to 
increased GLUT4 expression (McGee et al., 2008b). Loss of 
AMPKα2 activity also impairs exercise induced fibre type shifts 
(Rockl et al., 2007), whilst blunting total AMPK activity, via 
disruption of two of the AMPK regulatory subunits β1/β2 leads to 
reduced exercise capacity and impaired mitochondrial function 
(O'Neill et al., 2011). However, it should also be re-iterated that 
signalling specificity to endurance exercise has also not been 
proven. For instance a number of endurance exercise models 
have demonstrated an increase in read outs of mTORC1 activity 
(a key regulator of resistance training adaptations) (Benziane et 
al., 2008; Wilkinson et al., 2008; Mascher et al., 2011). 

Molecular pathway Crosstalk – the limiter on 
divergent muscle adaptation? 

Given the central role that mTORC1 and AMPK play in 
resistance and endurance exercise adaptation respectively; a 
key question is whether convergence between these pathways 
may account for the concurrent training effect. As an energy 
sensor, one of the key roles of AMPK is to rapidly switch off 
energy consuming pathways and switch on energy producing 
pathways in response to an energy stress (Hardie et al., 2006). 
Protein synthesis requires a high-energy demand 
(approximately 4 high energy phosphate bonds per peptide 
bond formed) and so under times of energy stress when AMPK 
is active, protein synthesis is suppressed via crosstalk at 
several points in the mTORC1 pathway (see figure 2 for a 
summary) (Inoki et al., 2003; Gwinn et al., 2008).  

The first evidence that AMPK activation can inhibit mTORC1 
activity in response to energy stress was reported by Kun-Liang 
Guan’s group (Inoki et al., 2003). The mechanism was 
dependent upon the phosphorylation and activation of the 
negative regulator of mTORC1, TSC2 (Tuberous Sclerosis 
Complex 2) (Inoki et al., 2003). TSC2 acts as an important 
“switch” in the control of mTORC1 activity. TSC2 is 
phosphorylated and inhibited by p90RSK (Roux et al., 2004) 
and by PKB (Dan et al., 2002; Potter et al., 2003) in response to 
mitogenic stimulation leading to increased mTORC1 activity. 
Whereas, phosphorylation by AMPK at Ser

1345
 leads to 

increased TSC2 activity and subsequent repression of mTORC1 
(Inoki et al., 2003).  

A second mechanism of AMPK repression was recently 
identified by Ruben Shaw’s group (Gwinn et al., 2008). Their 
data identified that Raptor, which controls docking of mTORC1 
substrates into the mTORC1 complex (Schalm et al., 2005) is 
phosphorylated by AMPK at Ser

792
 (Gwinn et al., 2008). This 

phosphorylation event leads to the binding of Raptor to 14-3-3 
which prevents Raptor from docking with mTORC1 substrates 
and an inhibition of mTORC1 function (Gwinn et al., 2008).  

Thus, in vitro, AMPK clearly can regulate the activity of 
mTORC1. However, whether endogenous AMPK can mediate 
the same suppressive effect on mTORC1 in skeletal muscle in 
vivo is less clear. Genetic support for the role of AMPK in 

regulating skeletal muscle mass has been provided following a 
series of elegant studies utilizing conditional, muscle specific 
AMPK knockout mice (Mounier et al., 2011; Lantier et al., 2010; 
Mounier et al., 2009). Further, AMPKα1 is specifically activated 
by chronic muscle loading in mice (McGee et al., 2008a) which 
presumably acts to regulate mTORC1 activity, as deletion of 
AMPKα1 enhances mTORC1 signalling and muscle growth in 
response to loading (Mounier et al., 2009). These data, albeit in 
mouse models of hypertrophy, indicate that the AMPK-mTORC1 
interaction may play a role in regulating skeletal muscle mass.  

AMPK activation with the compound activator AICAR can impair 
the activation of mTORC1 signalling following acute resistance 
exercise in rodents (Thomson et al., 2008). However, this 
approach has not been used to study the role of AMPK on load-
induced hypertrophy in either rodent or human models 

Do interference signals always impair adaptation? 

As we have discussed, loss of AMPK activity promotes muscle 
growth in rodent models (Mounier et al., 2009) and preceding 
resistance exercise with AMPK activation, either 
pharmacologically (Thomson et al., 2008) or via endurance 
exercise (Coffey et al., 2009) impairs the mTORC1 response. 
However when resistance exercise is preceded by a single bout 
of endurance exercise (90mins of continuous cycling) the 
anabolic response as measured by protein synthesis is not 
supressed by prior endurance exercise (Carrithers et al., 2007). 
When the concurrent literature is analysed it becomes apparent 
that most of the signalling data is derived from cycling based 
exercise. A recent meta-analysis on the concurrent training 
effect has strongly confirmed that endurance training in itself is 
hypertrophic (Wilson et al., 2012) and cycling exercise (1hr of 1 
legged cycling 65-70% maximal oxygen uptake) increases both 
mTORC1 and protein synthesis (Mascher et al., 2011). 
Additionally, although there is a trend, the effect size for 
hypertrophy is not significantly different for concurrent training 
with cycling as the mode when compared to strength training 
alone (Wilson et al., 2012).  

In fact it seems that a wide range of loading and contraction 
paradigms are capable of inducing substantial skeletal muscle 
hypertrophy in healthy, untrained individuals (Burd et al., 2012; 
Mitchell et al., 2012). Short term (Lundberg et al., 2013) and 
prolonged (21weeks) moderate volume concurrent cycling 
training in untrained (Mikkola et al., 2012) is as effective at 
achieving hypertrophy as strength training alone. Additionally, 
acute concurrent exercise in sedentary individuals provides a 
hypertrophic stimulus (Carrithers et al., 2007). With this in mind 
it appears that substantial synergy exists between 
moderate/high intensity cycling and resistance exercise in 
inducing muscle hypertrophy in healthy, untrained individuals.  

In contrast, when running is employed as the mode of 
endurance exercise, there appears to be a significant 
interference effect on hypertrophy (Wilson et al., 2012). As to 
why the mode of endurance exercise (running vs. cycling) has 
such a differential effect on mTORC1 related signalling is 
currently unclear. One explanation could be due to the 
increased proportion of active muscle recruitment in running 
exercise, which in turn results in greater metabolic disturbance. 
Alternatively, it could be related to contraction type i.e. 
concentric contractions occurring with cycling vs. an eccentric 
component, which occurs with running. It may also be that 
circulatory factors might differ between running and cycling 
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Figure 2. Cross talk between the AMPK and mTORC1 pathways. This figure highlights points of cross talk between these two divergent pathways. 

exercise, which in turn might supress mTORC1 activity. 
Unfortunately, there is a paucity of data addressing the acute 
interference effects of running type exercise on hypertrophic 
stimuli making conclusions impossible at this time. In order to 
dissect out the true molecular nature of the interference effect, 
study designs that incorporate truly divergent signalling 
paradigms are needed (Atherton et al., 2005) to overcome the 
clear molecular ‘noise’ that occurs during resistance and cycling 
exercise studies. 

To date the evidence pertaining to the molecular control of the 
concurrent training effect is somewhat unsatisfactory and seems 
unlikely to be fully explained by a simple interference between 
AMPK and mTORC1. The original work from Hickson 
demonstrated that it takes 10 weeks of concurrent training to 
see the interference effect. This therefore indicates that (1) 
concurrent exercise studies to date are asking the wrong 
question by addressing acute metabolic and signalling 
responses, (2) there is a pressing need for long term concurrent 
training studies allowing molecular analysis of the concurrent 
effect in situ, and (3) the concurrent effect appears to influence 
a secondary period of growth, rather than the initial growth 
response, as both the response to an acute bout of exercise 
and the initial hypertrophic gains are not altered by signalling 
divergence. 

To understand the concurrent training effect, it would seem 
important to determine how the adaptive response to resistance 

training evolves during the course of a training program. Clearly 
endurance exercise is not always inhibitory for mTORC1 related 
signalling (Apro et al., 2013) or myofibrillar protein synthesis 
post acute exercise in young healthy individuals (Carrithers et 
al., 2007), however the fact remains that prolonged exposure to 
endurance training blunts the resistance exercise adaptive 
response (Hickson, 1980). Therefore, what is the adaptive 
response that is important for improvements in muscle mass 
that normally would occur between 6-12 weeks of resistance 
training that are independent of acute changes in protein 
synthesis?  

One possibility is that chronic endurance training might 
gradually blunt the rate of protein translation, so that over time 
there is a compromise in protein accretion which eventually 
impairs force development and mass gains. A change that may 
be undetectable after a single bout of exercise. Alternatively, the 
enhanced efficiency of protein synthesis that resistance training 
imparts on skeletal muscle in response to further exercise bouts 
(Kim et al., 2005) could be blunted. If endurance exercise were 
to blunt this improved efficiency it may not be detected as a 
change in muscle protein synthesis but instead as a change in 
synthesis in specific muscle fractions. 

A second alternative to AMPK-mTORC interference is that 
rather than a gradual blunting of the adaptive response, 
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Figure 3. The impact of concurrent training on satellite cell activation 4 

days post exercise. Subjects underwent unilateral resistance exercise 
(this leg served as the resistance exercise alone condition) with biopsies 
pre and 4 days post exercise followed by a 6 day wash out. After the 
wash out period they underwent another bout of unilateral resistance 
exercise (this leg served as the concurrent leg) followed by bi-lateral 
endurance exercise (the non-resistance exercised leg served as the 
endurance exercise alone leg) (90mins cycling at 60% Wmax). Again 
biopsies were taken before and 4 days after exercise in both legs. 
Satellite cells were then stained and counted. Adapted from Babcock et 
al, 2012. 

endurance training affects a secondary adaptation that is 
required to support the hypertrophic response beyond initial 
increases in muscle mass and neuromuscular improvements. 
Indeed the importance of translational capacity in the 
maintenance of skeletal muscle mass has been reviewed 
recently (Van der Meer et al., 2011). Translational capacity is 
regulated in part by the amount of nuclear DNA, and so it has 
been proposed that the number of muscle nuclei (myonuclei) 
per fibre regulates skeletal muscle translational capacity (Van 
der Meer et al., 2011). The basis of this concept is that 
myonuclei regulate distinct cytosolic regions within cells (Cheek, 
1971), and so post-development, for a muscle to increase in 
size, as would occur during hypertrophy, generation of 
additional myonuclei is needed to support the translational 
capacity of the increased cross-sectional area of the muscle 
fibre (Van der Meer et al., 2011). Skeletal muscle is capable of 
increasing myonuclei number due to a pool of muscle-derived 
stem cells commonly referred to as satellite cells (Relaix & 
Zammit, 2012). Satellite cells reside in the basal lamina and 
have been shown to incorporate into muscle fibres to initiate 
repair and regeneration (Relaix & Zammit, 2012). A role for 
satellite cells in load-induced hypertrophy has been hotly 
contested for many years (O'Connor & Pavlath, 2007; McCarthy 
& Esser, 2007). Genetic mouse models in which satellite cells 
have been ablated demonstrate that load-induced hypertrophy 
can occur in the absence of a functional satellite cell pool 
(McCarthy et al., 2011), whereas regeneration does not, 
suggesting an obligatory role in this process (Relaix & Zammit, 

2012). It therefore seems likely that satellite cells form part of a 
co-ordinated response in skeletal muscle to maintain or 
increase myonuclear number in a host of physiological and 
pathophysiological scenarios (Relaix & Zammit, 2012). 

Babcock and colleagues recently reported that concurrent 
training led to impaired satellite cell activation in response to 
resistance exercise, compared to resistance exercise alone 
(Babcock et al., 2012). Interestingly, satellite cell density 
increased by 38% four days following the exercise bout in the 
resistance exercise group, whereas the concurrent group 
displayed a 6% reduction in satellite cell density compared to 
basal conditions, resulting in a 44% difference between the two 
groups post exercise (see Figure 3). In addition, this response 
seemed to occur predominantly in slow muscle fibres, as MHC1 
muscle fibre satellite cell density displayed a greater increase 
following resistance exercise (46% increase) compared with 
aerobic and concurrent exercise (-7 and 8%) respectively 
(Babcock et al., 2012). This study is important for two reasons, 
first the study design should be commended as it assesses the 
concurrent response beyond the initial exercise period (24h) 
and examines adaptation 4 days post-exercise. Secondly, it is 
the first study addressing the role of concurrent training on 
satellite cell activation, thus potentially highlighting an important 
adaptive response that has to date been over-looked. It will be 
interesting to see whether further longitudinal training studies 
are performed to assess the role of satellite cells and by 
extension the myonuclear domain in adaptation interference to 
concurrent exercise training. 

Conclusions 

Since the initial observations by Hickson (1980) that endurance 
exercise interferes with strength and mass gains following 
resistance exercise, scientists have searched for a mechanistic 
explanation to these findings. Progress in the last decade has 
meant that AMPK and mTORC1 have emerged as logical 
molecular correlates of skeletal muscle adaptation to training 
(see Figure 2), and as such serve as a good place to start when 
searching for a molecular basis to concurrent training. However, 
whilst both these proteins are involved in phenotypic responses 
to exercise, the complexities of exercise adaption and 
redundancy in higher organisms mean that concurrent training 
is unlikely to be explained purely by outputs from two pathways. 
We believe that by characterising the precise molecular control 
of exercise adaptations, and extending this analysis beyond the 
initial exercise adaptive ‘window’ will shed more light on the 
concurrent training phenomena. It is hoped that this 
understanding will then allow the effective design of exercise 
and nutritional strategies to maximise adaptive responses, 
which will ultimately translate to allowing individuals to become 
faster, higher and stronger. 
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